ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Chih-Ming Tsai, Shih-Jen Wang, Show-Chyuan Chiang
Nuclear Technology | Volume 172 | Number 3 | December 2010 | Pages 237-245
Technical Paper | Reactor Safety | doi.org/10.13182/NT10-A10932
Articles are hosted by Taylor and Francis Online.
The modular accident analysis program (MAAP) is a fast-running severe accident analysis tool with which the timing of key events and source terms in a severe accident are assessed. The idea of combining MAAP and an optimization algorithm to identify the realistic accident parameters in terms of minimizing the discrepancies between the plant data and the simulation results is straightforward. In 2008 Chien and Wang first compiled the combination of the MAAP4 source codes and a Simplex code as a computer-aided tool for the loss-of-coolant accident (LOCA) of the Kuosheng nuclear power plant (NPP). The break area and break elevation were successfully identified. However, in that approach to putting the idea into practice was that hard data dependence exists between MAAP and the optimization algorithm. Tedious tracing and modification work is required to ensure all plant variables in MAAP source codes with the exception of the adjusted accident parameters are identical at the beginning of every simulation. The plant- and accident-specific development features also easily limit the applications of this idea to the nuclear industry, like being boxed in.In this study a so-called "out-of-box" approach is proposed that can omit the limits of the idea applications on severe accident management. A parameter identification tool developed in this approach for the same postulated LOCA of the Kuosheng NPP is carried out for verification and validation. It demonstrates the advantages of successful parameter identification, less programming efforts, and no plant- and accident-specific features.