ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
Kari Korpiola, Joonas Järvinen, Karri Penttilä, Petri Kotiluoto
Nuclear Technology | Volume 172 | Number 2 | November 2010 | Pages 230-236
Technical Note | Radioactive Waste Management and Disposal | doi.org/10.13182/NT10-A10908
Articles are hosted by Taylor and Francis Online.
Incineration of spent ion exchange resin was simulated using the ChemSheet chemical calculation program. The simulation of the incineration was modeled for typical spent resin produced by pressurized water reactors (PWRs) and boiling water reactors (BWRs) in Finland. The objective of the study was to find the volume and mass reduction and the chemical compounds formed during incineration. The simulation showed that active elements did not play any role in incineration owing to small amount of Cs, Co, etc. The ash contained metal oxides - mainly hematite, iron oxide Fe2O3. Other products of the incineration were water, carbon dioxide, sulfuric acid, and nitrogen oxides. The volume reductions 1/100 and 1/14 of the spent resin were obtained for PWRs and BWRs, respectively. The annual ash production from incineration was calculated to be 408 kg and 746 kg for the currently operating Finnish PWR and BWR plants in Loviisa and Olkiluoto, respectively.