ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Kari Korpiola, Joonas Järvinen, Karri Penttilä, Petri Kotiluoto
Nuclear Technology | Volume 172 | Number 2 | November 2010 | Pages 230-236
Technical Note | Radioactive Waste Management and Disposal | doi.org/10.13182/NT10-A10908
Articles are hosted by Taylor and Francis Online.
Incineration of spent ion exchange resin was simulated using the ChemSheet chemical calculation program. The simulation of the incineration was modeled for typical spent resin produced by pressurized water reactors (PWRs) and boiling water reactors (BWRs) in Finland. The objective of the study was to find the volume and mass reduction and the chemical compounds formed during incineration. The simulation showed that active elements did not play any role in incineration owing to small amount of Cs, Co, etc. The ash contained metal oxides - mainly hematite, iron oxide Fe2O3. Other products of the incineration were water, carbon dioxide, sulfuric acid, and nitrogen oxides. The volume reductions 1/100 and 1/14 of the spent resin were obtained for PWRs and BWRs, respectively. The annual ash production from incineration was calculated to be 408 kg and 746 kg for the currently operating Finnish PWR and BWR plants in Loviisa and Olkiluoto, respectively.