ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
L. Ammirabile, A. Bieliauskas, A. Bujan, B. Toth, G. Gyenes, J. Dienstbier, L. Herranz, J. Fontanet, N. Reinke, A. Rizoiu, J. Jancovic
Nuclear Technology | Volume 172 | Number 2 | November 2010 | Pages 220-229
Technical Note | Reactor Safety | doi.org/10.13182/NT10-A10907
Articles are hosted by Taylor and Francis Online.
This paper presents an overview of the activities carried out in the framework of the SARNET project by the CIEMAT, INR, JRC/IE, GRS, UJV, and VUJE partners involved in the validation of ASTEC on fission product (FP) release and transport experiments simulating severe accident conditions in the reactor circuit and containment.These activities were mainly devoted to the analysis of the Phébus experiments, FPT0, FPT1, and FPT2, which provided fundamental reference data for the severe accident research. The ELSA, SOPHAEROS, CPA, and IODE modules were used for FP release from the bundle, transport in the circuit, containment thermal hydraulics and aerosol behavior, and iodine behavior in containment, respectively. Studies on aerosol behavior in the STORM experiments and iodine behavior in the ThAI experiments are also summarized.The paper describes not only the results of validation of some stand-alone or several coupled code modules but also the results of first integral calculations, when all the relevant modules of the ASTEC code were used to model the FP release and transport. In the integral calculations, no boundary conditions are to be defined by the code users for most of the code modules, but only at such interfaces were the boundary conditions applied in the experiment. The integral calculation allows more objective judgment about the combined uncertainties of the calculated results.Together with overview of the progress in the validation of the main ASTEC modules, this paper also points out what needs to be improved in the modeling of future ASTEC V2 code versions.