ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Charles W. Solbrig, Kenneth J. Bateman
Nuclear Technology | Volume 172 | Number 2 | November 2010 | Pages 189-203
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT10-A10904
Articles are hosted by Taylor and Francis Online.
The goal of this work is to produce a ceramic waste form that permanently occludes radioactive waste. This is accomplished by absorbing radioactive salts into zeolite, mixing with glass frit, heating to a molten state at 915°C to form a sodalite glass matrix, and solidifying for long-term storage. Less long-term leaching is expected if the solidifying cooling rate does not cause cracking. In addition to thermal stress, this paper proposes a mathematical model for the stress formed during solidification, which is very large for fast cooling rates during solidification and can cause severe cracking. A solidifying glass or ceramic cylinder forms a dome on the cylinder top end. The temperature distribution during solidification causes the solidification stress and the dome resulting in an axial length deficit. The axial stress, determined by the length deficit, remains when the solid is at room temperature with the outer region in compression and the inner region in tension. Large tensions will cause cracking of the specimen. The temperature deficit, derived by dividing the length deficit by the coefficient of thermal expansion, allows solidification stress theory to be extended to the circumferential stress. This paper derives the solidification stress model, gives examples, explains how to induce beneficial stresses, and compares theory to experimental data.