ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Trio of GAIN vouchers for sensors, materials, and fuels testing
The Department of Energy announced on June 5 that three companies—all of which are new to the Gateway for Accelerated Innovation in Nuclear (GAIN) voucher program—will receive vouchers to support their research on advanced fuels, materials, and sensors. The second round fiscal year 2025 vouchers will let the companies access specialized research facilities and expertise in the DOE’s national laboratory complex.
Frigyes Reisch
Nuclear Technology | Volume 172 | Number 2 | November 2010 | Pages 101-107
Technical Paper | Fission Reactors | doi.org/10.13182/NT10-A10897
Articles are hosted by Taylor and Francis Online.
Some 400 boiling water reactors (BWRs) and pressurized water reactors (PWRs) have been in operation for several decades. The presented concept, the high pressure boiling water reactor (HP-BWR), combines the best parts and omits the troublesome components of traditional BWRs and PWRs by taking into consideration the experiences gained during their operation.One of the major benefits of the HP-BWR is that safety is improved. The design utilizes gravity-operated control rods, and there is a large space for the cross-formed control rods between fuel boxes. The bottom of the reactor vessel is smooth and without penetrations. All the pipe connections to the reactor vessel are well above the top of the reactor core, and core spray is not needed. Additionally, internal circulation pumps are used.The HP-BWR concept is also environmentally friendly: Improved thermal efficiency is achieved by feeding the turbine with [approximately]340°C (15 MPa) steam instead of [approximately]285°C (7 MPa), and there is less warm water release to the recipient and less uranium consumption per produced kWh, resulting in the production of less waste.Finally, the HP-BWR is cost effective and simple, operating in direct cycle mode with no need for complicated steam generators. Moisture separators and steam dryers are placed inside the reactor vessel, and additional separators and dryers can be installed inside or outside the containment. Well-proved simple dry containment or wet containment can be used.In more than half a century, an extensive regulatory licensing experience has been built from traditional BWRs and PWRs. The HP-BWR is a developed, high-performance successor of those conventional designs. Therefore, it can be expected that licensing can be accomplished in a reasonable time.Several utilities are supporting manufacturers to study concepts for future reactors. It is likely that an application to one or more electrical power companies for financial support by a manufacturer to make a detailed feasibility study of the HP-BWR would be positively treated. This could be the next step to the implementation of the HP-BWR.