ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
A focus on clean energy transition
Michigan-based consulting firm Ducker Carlisle has released a report that outlines projected developments and opportunities as well as potential problems in the global shift to cleaner power. Global Energy Transition Outlook predicts that market growth will happen not only in large-scale utility upgrades but also in small- and mid-scale electrification projects.
C. M. Sommer, W. M. Stacey, B. Petrovic
Nuclear Technology | Volume 172 | Number 1 | October 2010 | Pages 48-59
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT10-A10881
Articles are hosted by Taylor and Francis Online.
A fuel cycle analysis was performed for the SABR transmutation reactor concept, using the ERANOS fast reactor physics code. SABR is a sodium-cooled, transuranic (TRU)-Zr-fueled, subcritical fast reactor driven by a tokamak fusion neutron source. Three different four-batch reprocessing fuel cycles, in which all the TRUs from spent nuclear fuel discharged from light water reactors are fissioned to >90% (by recycling four times), was examined. The total fuel residence time in the reactor was limited in these three cycles by a radiation damage limit (100, 200, or 300 displacements per atom) to the cladding material. In the fourth cycle the fuel residence time was determined by trying to achieve 90% burnup in a once-through cycle without reprocessing.