ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Trio of GAIN vouchers for sensors, materials, and fuels testing
The Department of Energy announced on June 5 that three companies—all of which are new to the Gateway for Accelerated Innovation in Nuclear (GAIN) voucher program—will receive vouchers to support their research on advanced fuels, materials, and sensors. The second round fiscal year 2025 vouchers will let the companies access specialized research facilities and expertise in the DOE’s national laboratory complex.
Andrea Bucalossi, Alessandro Petruzzi, Marian Kristof, Francesco D'Auria
Nuclear Technology | Volume 172 | Number 1 | October 2010 | Pages 29-47
Technical Paper | Reactor Safety | doi.org/10.13182/NT172-29
Articles are hosted by Taylor and Francis Online.
Computational reactor safety analysis is trending to replace conservative evaluation model calculations with best-estimate analysis complemented by uncertainty evaluation of the code results. In such cases, the evaluation of the margin to acceptance criteria (e.g., the maximum fuel rod clad temperature) is based on the upper limit of the calculated uncertainty range. Uncertainty analysis is compulsory if relevant conclusions are to be obtained from best-estimate thermal-hydraulic code calculations in order to avoid presenting single values of unknown accuracy for comparison with regulatory acceptance limits.This paper, after a thorough introduction of conservative and best-estimate methods and characterization of the main sources of uncertainties affecting best-estimate system codes, applies a best-estimate-plus-uncertainty (BEPU) method to three cases having as reference different nuclear power plants and different types of transients. Finally, the results from the BEPU approach is compared with a conservative approach and a combined approach.