ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Shinichi Kitawaki, Akira Nakayoshi, Mineo Fukushima, Noboru Yahagi, Masaki Kurata
Nuclear Technology | Volume 171 | Number 3 | September 2010 | Pages 285-291
Technical Paper | Pyro 08 Special / Reprocessing | doi.org/10.13182/NT10-A10863
Articles are hosted by Taylor and Francis Online.
Various residues containing uranium and transuranic are considered to be generated in pyroprocessing, and provided that the actinide elements are recovered from the residues, this can contribute to increasing the recovery ratio in the entire process. In this study the chemical form of the anode residues generated in our previous electrolysis test was investigated. The anode residue consisted of PuOCl, PuO2, and UO when electrolysis was performed using reduced oxide fuels, which are thought to be formed by the reaction between the anode residue and U-chloride contained in the molten salt. By adding ZrCl4 the actinide contained in the residue was converted to chloride. The chlorination reaction took [approximately]10 h to complete.