ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
A focus on clean energy transition
Michigan-based consulting firm Ducker Carlisle has released a report that outlines projected developments and opportunities as well as potential problems in the global shift to cleaner power. Global Energy Transition Outlook predicts that market growth will happen not only in large-scale utility upgrades but also in small- and mid-scale electrification projects.
Robert O. Hoover, Supathorn Phongikaroon, Michael F. Simpson, Shelly X. Li, Tae-Sic Yoo
Nuclear Technology | Volume 171 | Number 3 | September 2010 | Pages 276-284
Technical Paper | Pyro 08 Special / Reprocessing | doi.org/10.13182/NT10-2A
Articles are hosted by Taylor and Francis Online.
The electrochemical processing of spent metallic nuclear fuel has been demonstrated by and is currently in operation at the Idaho National Laboratory (INL). At the heart of this process is the Mark-IV electrorefiner (ER). This process involves the anodic dissolution of spent nuclear fuel into a molten salt electrolyte along with a simultaneous deposition of pure uranium on a solid cathode. This allows the fission products to be separated from the fuel and processed into an engineered waste form. A one-dimensional model of the Mark-IV ER has begun to be developed. The computations thus far have modeled the dissolution of the spent nuclear fuel at the anode taking into account uranium (U3+), plutonium (Pu3+), and zirconium (Zr4+). Uranium and plutonium are the two most important elements in the system, whereas zirconium is the most active of the noble metals. The model shows that plutonium is quickly exhausted from the anode, followed by dissolution of primarily uranium, along with small amounts of zirconium. The total anode potential as calculated by the model has been compared to experimental data sets provided by INL. The anode potential has been shown to match the experimental values quite well with root-mean-square (rms) values of 2.27 and 3.83% for two different data sets, where rms values closer to zero denote better fit.