ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Yoshiharu Sakamura, Takashi Omori
Nuclear Technology | Volume 171 | Number 3 | September 2010 | Pages 266-275
Technical Paper | Pyro 08 Special / Reprocessing | doi.org/10.13182/NT10-A10861
Articles are hosted by Taylor and Francis Online.
Two series of pyrochemical reprocessing tests for oxide fuels, consisting of pretreatment, electrolytic reduction, and electrorefining processes, were conducted using [approximately]100 g of UO2. In the pretreatment process, UO2 pellets of the starting material were oxidized into U3O8 powder, which simulated fuel decladding by voloxidation. Then, UO2 sinter with a porosity of 30 to 38% was fabricated from the U3O8 powder. Two cathode baskets charged with [approximately]100 g of the UO2 sinter were prepared, and two electrolytic reduction tests were carried out in a LiCl-Li2O electrolyte at 650°C. The results suggested that the reduction to uranium metal could be completed within 10 h with the current efficiency >62%. It was verified that the porous UO2 sinter was of great advantage to the electrolytic reduction process. In the subsequent electrorefining process, the reduction products were charged in two anode baskets, and electrolysis was carried out in a LiCl-KCl-UCl3 electrolyte at 500°C. Within 8 h, most of the uranium metal was anodically dissolved into the electrolyte with the current efficiency >88%. Dendritic uranium metal was collected on a stainless steel cathode. Consequently, it was demonstrated that a refined uranium metal could be produced from UO2 pellets with a high degree of efficiency.