ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Byung Heung Park, Ho Hee Lee, Won Myung Choung, Jin-Mok Hur, Chung-Seok Seo
Nuclear Technology | Volume 171 | Number 3 | September 2010 | Pages 232-246
Technical Paper | Pyro 08 Special / Reprocessing | doi.org/10.13182/NT10-A10859
Articles are hosted by Taylor and Francis Online.
The Advanced Spent Fuel Conditioning Process (ACP) has been proposed and developed by the Korea Atomic Energy Research Institute (KAERI) to treat oxide spent fuels (SFs) from light water reactors to reduce the volume, heat load, and radiotoxicity of processed SFs. In the ACP, an electrochemical reduction process has been developed, and an electroreducer with a maximum 20 kg/batch scale has been installed in the KAERI ACP facility. In this study, electrochemical reduction runs were carried out with 10 kg/batch of SIMFUEL at 923 K under current controlled conditions.The electrochemical reduction processes adopted LiCl molten salt as the electrolyte, and initially, 3.0 or 4.9 wt% of Li2O was dissolved to increase the oxygen ion activity in this work. A porous MgO basket was used to contain the powder-type test fuels; the basket and fuels along with a metal conductor as the current lead comprise a packed bed reactor where reduction takes place. During the three runs of reduction, the Li2O concentration was decreased with the applied current, and it was found that Ar bubbling in the bulk phase accelerated the depletion rate. Alkali and alkaline earth metal elements from the test fuels had dissolved and accumulated in the molten salt. The reduced metal was recovered after the runs, and sampled products exhibited >90% reduction yields with respect to their positions in the MgO basket. In addition to the experimental study, a three-dimensional model was developed to analyze respective phases in a reactor by using commercial tools. Streamlines of the fluids, the temperature distribution, and the oxygen partial pressure were obtained for the gas phase in motion, and the potential field calculation was carried out to reveal that most of the potential was applied to the cathode side because of the low electrical conductivities of the constituents.