ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Yifeng Wang, Carlos F. Jove-Colon, Patrick D. Mattie, Robert J. MacKinnon, Michael E. Lord
Nuclear Technology | Volume 171 | Number 2 | August 2010 | Pages 201-219
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT10-A10783
Articles are hosted by Taylor and Francis Online.
Water is the most important reacting agent that directly controls radionuclide release from a nuclear waste repository to a human-accessible environment. In this paper, we present a water balance model to calculate the amount of water that can accumulate inside or percolate through a breached waste package in Yucca Mountain repository environments as a function of the temperature and relative humidity in the surrounding waste emplacement drift, the rate of water dripping from seepage, the area of breaches on the waste package, and the extent of waste degradation. The model accounts for sheet flows created as water drips fall onto the waste package surface, water vapor diffusion across waste package breaches, and water vapor equilibrium with unsaturated porous corrosion products. Preliminary model simulation results indicate that a breached waste package may maintain a large part of its barrier capability, and probably <1% of the total seepage flux impinging on the waste package surface can enter the package. Vapor diffusion of water through the breaches can be as important as liquid water flow into the waste package. Waste degradation reactions can consume a significant fraction of water entering the waste package. The water saturation inside waste packages will be low (<0.5), and the advective water flux out of a waste package will be small (with the mean value <0.5 [script l]/yr per package) over a wide range of seepage rates considered (1 to 1000 [script l]/yr). Furthermore, the ionic strength of in-package water will remain relatively high for the first 10000 yr, which will likely destabilize colloid suspensions and limit colloid releases.