ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
G. Danko, J. Birkholzer, D. Bahrami, N. Halecky
Nuclear Technology | Volume 171 | Number 1 | July 2010 | Pages 74-87
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT10-A10773
Articles are hosted by Taylor and Francis Online.
A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rock mass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective airflow as well as heat and mass transport in a representative emplacement drift, embedded in a three-dimensional, mountain-scale rock mass with edge cooling, are explicitly simulated for the first time in the literature, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rock mass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominates the drift airspace for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot drift sections to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent dispersion models, in addition to showing differences in temperature, humidity, and condensation rate distributions along the drift length. A new dispersive model is also formulated for comparison, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project.