ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. González, P. Zanocco, M. Giménez, M. Schivo, O. Mazzantini, M. Caputo, G. Bedrossian, P. Serrano, A. Vertullo
Nuclear Technology | Volume 171 | Number 1 | July 2010 | Pages 14-26
Technical Paper | Reactor Safety | doi.org/10.13182/NT10-A10769
Articles are hosted by Taylor and Francis Online.
This paper presents a model of the Atucha Unit II pressurized heavy water reactor nuclear power plant (currently in the final construction stage) developed in RELAP5/MOD3.3. The nodalization was implemented in order to comply with the probabilistic safety analysis required in the licensing, commissioning, and operating process.The reactor is cooled and moderated by heavy water. Though the primary circuit is equivalent to a two-loop pressurized water reactor, the reactor core consists of vertical channels surrounded by a relatively large volume of heavy water acting as a moderator. This moderator is cooled by an independent system and kept at the same pressure but lower temperature than the primary circuit.The relevant components and systems of the plant are presented and nodalized. The main characteristics of the plant are discussed to achieve a correct representation of the expected physical behavior. Additionally, an integral platform of data management is implemented that processes the geometric and physical data for nodalization and finally generates the code input. Then, a complete tracking of data is possible from the corresponding referenced report to the input deck. This tool facilitates the quality assurance process by independent reviewers. Moreover, the verification of sources and documentation employed can be easily implemented.Initially, the steady state is analyzed by comparing variables obtained with the model with their respective design values and previous calculations performed with other models. Finally, a case of loss of heat sink caused by an electrical supply failure is analyzed. Relevant aspects of the plant dynamic are analyzed and presented for this case. The standard procedure established in the plant to tackle this initiating event is also discussed considering the triggered signals and the configurations of the main systems.