ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Kazuaki Kito, Rui Hu, Mujid S. Kazimi
Nuclear Technology | Volume 171 | Number 1 | July 2010 | Pages 1-13
Technical Paper | Reactor Safety | dx.doi.org/10.13182/NT10-A10768
Articles are hosted by Taylor and Francis Online.
The Large Assembly with Small Pins (LASP) concept is an evolutionary fuel design proposed to enable a higher power density in boiling water reactors while maintaining the same operating conditions, such as power-to-flow ratio, core inlet conditions, and fuel-to-moderator ratio. It is based on replacing four traditional assemblies and the large water gap regions between them with a single large assembly having a 22 × 22 square fuel pin lattice. Twenty-five water rods within the assembly help maintain neutron moderation and accommodate as many finger-type control rods. It was previously shown that the LASP core allows operation with 20% higher power density than the core with traditional 9 × 9 fuel assemblies. However, the void reactivity coefficient of the LASP core is 25% more negative. In this study, the stability performance of the LASP core has been evaluated.The characteristics of density wave oscillations in the LASP core and their sensitivity to the operating parameters have been investigated. Although the perturbation decay ratios for the LASP core were found to be greater than those of the reference core, the stability criteria are sufficiently satisfied. Sensitivity studies were performed on the effects of design and operating parameters. It can be concluded that the LASP and the reference core have similar sensitivity to operating parameters. Furthermore, the calculated decay ratios were much smaller than the stability criterion for all the considered parameter ranges.