ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Vincent Bouineau, Gilles Bénier, Dominique Pêcheur, Joël Thomazet, Antoine Ambard, Martine Blat
Nuclear Technology | Volume 170 | Number 3 | June 2010 | Pages 444-459
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT10-A10330
Articles are hosted by Taylor and Francis Online.
The waterside corrosion kinetics of Zircaloy-4 are accelerated in pressurized water reactors (PWRs) in comparison with autoclaves. Beyond this comparison, an enhancement of oxidation rate - called phase III - can be observed from the third reactor cycle. This results in significant oxide thicknesses at high burnups. Several hypotheses have been devised to explain this phase III of Zircaloy-4 in PWRs, but none have been fully validated. In an attempt to better understand the oxidation acceleration phenomenon affecting Zircaloy-4 in PWRs, we decided to analyze the in-reactor corrosion of Zircaloy-4 by quantifying the acceleration factor KPWR. This was defined as the multiplication factor to be applied to the oxidation rate in an autoclave to obtain the kinetics in a PWR (with an equivalent metal-oxide interfacial temperature and taking into account both the power and thermal-hydraulic histories). This analysis was based on oxide thicknesses formed on Zircaloy-4 cladding containing UO2 or mixed-oxide fuel and having been irradiated for one to six cycles in French PWRs. This analysis enabled us to demonstrate the following:1. KPWR is always >1, which clearly shows an acceleration in the Zircaloy-4 oxidation kinetics in a reactor.2. KPWR is equivalent to [approximately]2 for rods having been subjected to one or two cycles.3. Above two reactor cycles, KPWR increases with the level of irradiation and ends up reaching values close to 6. This KPWR increase is representative of phase III.4. KPWR and its variations are not directly related to the increase in the fluence. Phase III is not associated with a burnup threshold.5. Phase III seems to be related to a threshold that is a function of the oxide layer thickness.6. The precipitation of hydrides could be used to define a threshold that is a function of the oxide layer thickness above which phase III occurs. This hypothesis is consistent with the thickness at which KPWR increases. Furthermore, phase III observed is consistent with the known increase in the oxidation kinetics of samples with hydride rims in an autoclave.Therefore, acceleration of the oxidation kinetics in a reactor (compared with an autoclave) is not constant but does seem to be a complex function of different variables such as time, temperature, and both the thermal and neutron fluxes. Furthermore, the precipitation of hydrides seems to be a first-order factor triggering phase III of Zircaloy-4 in a reactor.