ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
J. P. Van Dorsselaere, P. Chatelard, M. Cranga, G. Guillard, N. Trégourès, L. Bosland, G. Brillant, N. Girault, A. Bentaïb, N. Reinke, W. Luther
Nuclear Technology | Volume 170 | Number 3 | June 2010 | Pages 397-415
Technical Paper | Reactor Safety | doi.org/10.13182/NT10-A10326
Articles are hosted by Taylor and Francis Online.
The French Institut de Radioprotection et de Sûreté Nucléaire (IRSN) and the German Gesellschaft für Anlagen und Reaktorsicherheit mbH (GRS) have been jointly developing for several years a system of calculation codes (or "integral" code), ASTEC (Accident Source Term Evaluation Code), to simulate the complete scenario of a hypothetical severe accident in a nuclear light water reactor from the initiating event through the possible radiological release of fission products out of the containment, the so-called "source term." Very intensive validation work has been performed in recent years by IRSN and GRS on the V1 versions by comparison of code calculations with results of more than 160 international experiments. Complementary validation was performed by 30 partners of the SARNET European Network of Excellence in the 6th Framework Programme of the European Commission, where ASTEC is considered the European reference code. The global status of validation is good for most phenomena, as shown by several examples that are described in this paper, and even very good on fission product behavior. The main need for modeling improvement concerns reflooding of a degraded core, due to the lack in ASTEC V1 of any dedicated model, and intensive efforts will focus on this topic in the next years. Molten core concrete interaction models are at the state of the art, but new experiments under way in the international frame and a better understanding of physical mechanisms are necessary to make further progress. Version V2.0 of the new ASTEC series, released mid-2009, takes benefit of the previous very intensive validation of the ICARE2 IRSN mechanistic code since its core degradation models have now been implemented. Validation will continue in the SARNET network from 2009 to 2013.