ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
Anthony M. Scopatz, Erich A. Schneider, Jun Li, Man-Sung Yim
Nuclear Technology | Volume 183 | Number 1 | July 2013 | Pages 45-61
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A16991
Articles are hosted by Taylor and Francis Online.
Technology development and deployment decisions are justified by weighing their costs against the expected benefits. Multiple nuclear fuel cycle (NFC) simulation models have been devised, some with the aim of quantifying cyclewide sensitivities to variations from base-case scenarios. Base-case sensitivity studies often perturb only one parameter at a time and only in the region around the initial value. This paper details a sensitivity study methodology that applies entropy-based statistical methods of information theory to describe outcomes produced by an NFC model. This supersedes past efforts at sensitivity and uncertainty analysis by allowing a much larger space to be explored. Here, 30 independent fuel cycle parameters for a fast reactor-light water reactor hybrid scenario are varied simultaneously and stochastically. This fuel cycle schema was chosen as a well-known, sufficiently complex model; the underlying statistical methods could be applied to any cycle. This study uses the uncertainty coefficient computed from contingency tables (CTs) to represent the sensitivity of a technology-defining input to the response. The response of interest here was taken to be the deep geologic repository capacity for a given realization of fuel cycle inputs. After computing the uncertainty coefficients, the inputs themselves are sorted based on decreasing sensitivities. Fast reactor used fuel plutonium separations were found to be most important to the cycle. Furthermore, to represent input covariances (the effect of one input on the sensitivity of a second input to the response), a new measure is defined on three-dimensional CTs. This metric is the coefficient of the variation of uncertainty coefficient of two-dimensional slices of the original table. Sorting by this sensitivity of sensitivity metric, the input pair of fast reactor americium separations together with high-level-waste storage time was found to have the largest joint effect on the repository capacity.