ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
Kosuke Aizawa, Kaoru Fujita, Shingo Hirata, Naoto Kasahara
Nuclear Technology | Volume 183 | Number 1 | July 2013 | Pages 1-12
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-A16988
Articles are hosted by Taylor and Francis Online.
A conceptual design study of Japan Sodium-cooled Fast Reactor (JSFR) is in progress in the Fast Reactor Cycle Technology Development (FaCT) project in Japan. In the design of JSFR, a selector valve mechanism is adopted for its failed-fuel detection and location (FFDL) system. Since JSFR has only two FFDL units for [approximately]600 fuel subassemblies due to its compact design of the reactor vessel, one FFDL unit must handle a much larger number of subassemblies than in previous designs. In addition, during the long plant life of 60 years, the wear length of the selector valve will become longer than those of past reactors. Therefore, the endurance of the selector valve becomes important. To demonstrate the manufacturability and endurance of the selector valve, a full-size mockup valve including coating to protect the sliding mechanism was manufactured, and an endurance experiment of the mockup model under high-temperature sodium was conducted. Dimensional inspections and seal performance showed manufacturability of the selector valve. The cross-section observation, hardness measurement, and chemical assay results after the endurance experiment showed that the coating layer on the sliding surface still remains. Thus, the endurance of the JSFR selector valve was demonstrated.