ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Y. F. Chen, Y. F. Chiou, S. J. Chang, S. H. Jiang, R. J. Sheu
Nuclear Technology | Volume 182 | Number 2 | May 2013 | Pages 224-234
Regular Technical Paper | Special Issue on the Symposium on Radiation Effects in Ceramic Oxide and Novel LWR Fuels / Radiation Transport and Protection | doi.org/10.13182/NT13-A16432
Articles are hosted by Taylor and Francis Online.
Surface dose rate distribution over a spent nuclear fuel dry storage cask was realistically evaluated using the MONACO with Automated Variance Reduction using Importance Calculations (MAVRIC) computational sequence in the SCALE6 code system, with special emphasis on the effects of detailed modeling on the source term and cask geometry. The first storage cask in Taiwan has been fabricated and will be ready for loading of the designated spent fuels from Taiwan Power Company's first nuclear power plant. A test run is scheduled for 2013.Neutron and gamma-ray source terms of the first batch of 56 spent fuels were determined one by one according to their specifications, burnup histories, and cooling times. The geometry of the cask was modeled in detail including the prescribed loading pattern of 56 spent fuels in the canister. MAVRIC was modified to allow specification of the source intensity and the axial distribution for each fuel bundle, and this resulted in a factor of 3 difference in the calculated surface dose rates from fuel gammas. The main purpose for such comprehensive and detailed modeling was to compare the results with a simplified model and to predict a dose rate distribution as realistically as possible in preparation for making a high-quality comparison with field measurements. In addition to checking assumptions adopted in the safety analysis report, the results of this study can provide useful guidance for the preparation of a health physics program during the test run and, more importantly, pave the way for establishing a valuable benchmark problem.