ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Catharina Nästrén, Asunción Fernandéz-Carretero, Joseph Somers
Nuclear Technology | Volume 181 | Number 2 | February 2013 | Pages 331-336
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A15787
Articles are hosted by Taylor and Francis Online.
Use of composites of actinide oxides dispersed in a Mo metal matrix is a recent inert matrix fuel concept for the transmutation of Pu and the minor actinides (Np, Am, and Cm). These elements are present in spent nuclear fuel, and their long-term radiotoxicity can be minimized if they are recovered from the fuel and irradiated in dedicated targets in nuclear reactors. The synthesis of such highly radioactive fuels is not simple, and given the high radiotoxicity of Am, the safety of operation of such a process must be examined for production of small-scale analytical batches. Infiltration of americium nitrate into porous PuO2 beads has potential safety bonuses. The beads are produced by a sol-gel external gelation route. Tests have been developed here with CeO2, as a surrogate for PuO2, and have been optimized for both bead production and pelletization of a blend of calcined beads and Mo powder. Addition of carbon to the sol-gel feed solution and its subsequent pyrolysis provides a means to optimize the porosity of the oxide beads. The carbon acts as a pore former. The highest-quality product meeting typical fuel specifications required addition of 20 g/l carbon in the sol-gel feed and calcination of the CeO2 beads at 800°C. Subsequent Mo cermet composites with 20 or 40 vol% of ceramic reached densities in excess of 90% of the theoretical value as is required for nuclear reactor applications. Finally, the step from CeO2 surrogates to (Pu, Am)O2 targets has been made and pellets of excellent quality produced.