ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Mohan S. Yadav, Seungjin Kim
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 94-105
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15759
Articles are hosted by Taylor and Francis Online.
The present study focuses on developing a database to investigate the effects of 90-deg vertical elbows on the transport and distribution of local two-phase flow parameters in air-water bubbly flows. The experimental facility consists of both vertical and horizontal sections made out of 50.8-mm inner diameter pipes and interconnected via 90-deg glass elbows. Six different flow conditions within or near the bubbly flow regime at the inlet are investigated in the current study. A multisensor conductivity probe is employed to measure detailed local two-phase flow parameters at ten axial locations along the test section, within which 90-deg elbows are installed at L/D = 63 and 244.7 from the inlet. The data show that the elbow makes a significant impact on the two-phase pressure drop, bubble distribution, and bubble velocity. The bubbles moving across the vertical-upward elbow are entrained along the secondary flow streamlines leading to a bimodal distribution. For the test conditions investigated in the present study, this bimodal distribution is independent of the bubble distribution upstream of the vertical-upward elbow. In the case of the vertical-downward elbow, on the other hand, the large inertia of the axial liquid flow results in the bubbles migrating toward the inside of the elbow curvature.