ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
A. Kryukov, A. Ballesteros, C. Bruynooghe, U. Von Estorff
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 443-449
Technical Paper | Special Issue on the Initial Release of MCNP6 / Materials for Nuclear Systems | doi.org/10.13182/NT12-A15355
Articles are hosted by Taylor and Francis Online.
This paper presents the capabilities of the International Database on Reactor Pressure Vessel (RPV) Materials (the Database) for precise and comprehensive RPV lifetime assessment, aimed at supporting the long-term operation of nuclear power plants. The Database was created in the framework of the International Atomic Energy Agency activities. Fourteen countries, including the United States, France, and Russia, supplied large amounts of surveillance results and data from national and international research programs.The recent achievements and open issues in the area of RPV radiation embrittlement assessment are considered. They concern mainly the effects resulting from long irradiation times and high neutron fluences (neutron flux influence, late blooming phases), nickel and manganese synergism, and further validation of appropriate safety concepts (the Master Curve approach).New information from ongoing surveillance and research programs has to be incorporated into the Database for the most effective RPV radiation embrittlement prediction. These additional data will greatly support the development of embrittlement correlations and embrittlement trend curves valid for long irradiation times.