ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Ivan Gajev, Tomasz Kozlowski, Yunlin Xu, Thomas Downar
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 383-398
Technical Paper | Special Issue on the Initial Release of MCNP6 / Fission Reactors | doi.org/10.13182/NT12-A15351
Articles are hosted by Taylor and Francis Online.
Unstable behavior of boiling water reactors (BWRs) is known to occur during operation at certain power and flow conditions. This paper reports on an uncertainty study of the impact of various parameters on the prediction of the stability of the BWR within the framework of the Organisation for Economic Co-operation and Development Ringhals Unit 1 (Ringhals-1) Stability Benchmark. The time domain code TRACE/PARCS was used in the analysis. The paper is divided into two parts: a sensitivity study on numerical parameters (nodalization, time step, etc.) and an uncertainty analysis of the stability event. The sensitivity study was based on a space-time converged solution, and the most important neutronic and thermal-hydraulic parameters were identified for parameterization. The uncertainty calculation was then performed using the well-established propagation of input errors methodology. Finally, the Spearman Rank method was used to identify the most influential parameters affecting the stability of Ringhals-1.