ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Roger L. Martz
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 316-335
Technical Paper | Special Issue on the Initial Release of MCNP6 / Radiation Transport and Protection | doi.org/10.13182/NT12-A15347
Articles are hosted by Taylor and Francis Online.
Los Alamos National Laboratory Monte Carlo N-Particle transport code (MCNP) Version 6 (MCNP6) has been extended to include a new capability that permits tracking of neutrons and photons on an unstructured mesh that is embedded as a mesh universe within its constructive solid geometry capability. The mesh geometry is created through Abaqus/CAE using its solid modeling capabilities. MCNP transport results are calculated for mesh elements using a path length estimator while element-to-element tracking is performed on the mesh. The results from MCNP6 can be exported to Abaqus/CAE for visualization or other physics analysis. Three geometrically simple benchmark experiments were analyzed: Godiva, Osaka nickel sphere, and fusion neutron source vanadium cube. Computer run time is proportional to the number of mesh elements, element order, and element type specified in the input. Good agreement of our MCNP6 results with the measured neutron leakage for the nickel sphere and the measured neutron and gamma spectra from the vanadium assembly was observed.