ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Roger L. Martz
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 316-335
Technical Paper | Special Issue on the Initial Release of MCNP6 / Radiation Transport and Protection | doi.org/10.13182/NT12-A15347
Articles are hosted by Taylor and Francis Online.
Los Alamos National Laboratory Monte Carlo N-Particle transport code (MCNP) Version 6 (MCNP6) has been extended to include a new capability that permits tracking of neutrons and photons on an unstructured mesh that is embedded as a mesh universe within its constructive solid geometry capability. The mesh geometry is created through Abaqus/CAE using its solid modeling capabilities. MCNP transport results are calculated for mesh elements using a path length estimator while element-to-element tracking is performed on the mesh. The results from MCNP6 can be exported to Abaqus/CAE for visualization or other physics analysis. Three geometrically simple benchmark experiments were analyzed: Godiva, Osaka nickel sphere, and fusion neutron source vanadium cube. Computer run time is proportional to the number of mesh elements, element order, and element type specified in the input. Good agreement of our MCNP6 results with the measured neutron leakage for the nickel sphere and the measured neutron and gamma spectra from the vanadium assembly was observed.