ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L. J. Cox, J. Durkee, J. Elson, M. Fensin, R. A. Forster, J. Hendricks, H. G. Hughes, R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. McKinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, T. Zukaitis
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 298-315
Technical Paper | Special Issue on the Initial Release of MCNP6 / Radiation Transport and Protection | doi.org/10.13182/NT11-135
Articles are hosted by Taylor and Francis Online.
MCNP6 is simply and accurately described as the merger of MCNP5 and MCNPX capabilities, but it is much more than the sum of those two computer codes. MCNP6 is the result of five years of effort by the MCNP5 and MCNPX code development teams. These groups of people, residing in Los Alamos National Laboratory's (LANL) X Computational Physics Division, Monte Carlo Codes Group (XCP-3), and Decision Applications Division, Radiation Transport and Applications Team (D-5), respectively, have combined their code development efforts to produce the next evolution of MCNP. While maintenance and bug fixes will continue for MCNP5 1.60 and MCNPX 2.7.0 for upcoming years, new code development capabilities only will be developed and released in MCNP6. In fact, the initial release of MCNP6 contains 16 new features not previously found in either code. These new features include the abilities to import unstructured mesh geometries from the finite element code Abaqus, to transport photons down to 1.0 eV, to transport electrons down to 10.0 eV, to model complete atomic relaxation emissions, and to generate or read mesh geometries for use with the LANL discrete ordinates code Partisn. The first release of MCNP6, MCNP6 Beta 2, is now available through the Radiation Safety Information Computational Center, and the first production release is expected in calendar year 2012. High confidence in the MCNP6 code is based on its performance with the verification and validation test suites, comparisons to its predecessor codes, the regression test suite, its code development process, and the underlying high-quality nuclear and atomic databases.