ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
TVA and Entra1 to deploy 6 GW of NuScale SMRs
The Tennessee Valley Authority and Houston, Texas–based energy production company Entra1 Energy recently announced the signing of an agreement to collaborate on the deployment of six new nuclear power plants equipped with NuScale small modular reactors.
N. Kornilov, F.-J. Hambsch, I. Fabry, S. Oberstedt, T. Belgya, Z. Kis, L. Szentmiklosi, S. Simakov
Nuclear Science and Engineering | Volume 165 | Number 1 | May 2010 | Pages 117-127
Technical Paper | doi.org/10.13182/NSE09-25
Articles are hosted by Taylor and Francis Online.
A measurement of the 235U prompt fission neutron spectrum (PFNS) was performed at the Budapest Nuclear Research Reactor at 100 K incident neutron energy. The motivation for this investigation was to verify some literature data measured over the past 20 years that contradict the Los Alamos model, as well as integral data, benchmark (Keff) experiments, and recent spectral data taken at 0.5 MeV incident neutron energy. The measured spectra using three neutron detectors are in excellent agreement with each other. The average spectrum confirms literature data within the error bars in the neutron energy range of 0.7 to 10 MeV. However, the present PFNS shape cannot predict integral experimental data. It seems to be clear now that the disagreement between microscopic and macroscopic data is not connected with a systematic experimental error in the PFNS at low incident neutron energy.