ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
T. V. Dury, M. T. Dhotre
Nuclear Science and Engineering | Volume 165 | Number 1 | May 2010 | Pages 101-116
Technical Paper | dx.doi.org/10.13182/NSE08-90
Articles are hosted by Taylor and Francis Online.
Current designs of pressurized water reactors (PWRs) employ a boric acid solution in the primary cooling water to control core reactivity during operation and shutdown. However, situations could theoretically occur in which diluted borated water is present in the primary circuit. Scale experiments have been performed for a single-pump start-up, with subsequent computational fluid dynamics (CFD) simulation, to examine the accuracy with which the concentration distribution of diluted borated water entering a reactor core can be predicted. It was concluded that higher-order advection schemes must be used to obtain sufficient resolution of the velocity field and capture the larger-scale effects of the flow but that each turbulence model produces a different core-inlet boron concentration development and distribution. Though it was not the most sophisticated available, the two-equation RNG k- turbulence model produced the closest agreement with experiment. However, mesh independence of the computational results was not achieved. As a sequel to this scaled CFD study, a simulation was carried out of a full-size three-loop Siemens-type PWR featuring a perforated cylindrical flow baffle in the lower plenum. Results again showed different characteristics in time and space, depending on the turbulence model used. Comparative assessment of the results obtained with the code CFX-5 showed that correct geometrical modeling of a perforated flow baffle in the lower plenum is essential, as a porous medium representation of the baffle can lead to serious underprediction of mixing. This occurred particularly with the RNG model but also using more sophisticated turbulence models. Further refinement of the mesh is now necessary to achieve mesh independence of the results. This requires access to a massively parallel computer system.