ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Dan G. Cacuci, Mihaela Ionescu-Bujor
Nuclear Science and Engineering | Volume 165 | Number 1 | May 2010 | Pages 18-44
Technical Paper | doi.org/10.13182/NSE09-37B
Articles are hosted by Taylor and Francis Online.
This work presents a rigorous methodology for computing best-estimate predictive results using experimental information in conjunction with models of time-dependent and/or stationary systems. This methodology uses Bayes' theorem in conjunction with information theory to assimilate consistently all available experimental and computational uncertainty-afflicted information (including discretization-modeling errors) for obtaining best-estimate calibrated model parameters and responses, together with correspondingly reduced uncertainties. This new methodology also provides quantitative indicators for assessing the consistency among parameters and responses, for consequent acceptance or rejection of information within the overall assimilation procedure. The companion paper presents a paradigm application of this methodology for obtaining best-estimate parameters for a transient thermal-hydraulic benchmark system pertinent to reactor safety.