ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2023 ANS Annual Meeting
June 11–14, 2023
Indianapolis, IN|Marriott Indianapolis Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2023
Jan 2023
Latest Journal Issues
Nuclear Science and Engineering
June 2023
Nuclear Technology
July 2023
Fusion Science and Technology
Latest News
Destruction of Ukrainian dam threatens Zaporizhzhia
A Soviet-era dam downstream from the Zaporizhzhia nuclear power plant in southeastern Ukraine collapsed last evening, causing the water level of the Kakhovka Reservoir north of the dam to drop and raising new concerns over the already jeopardized safety of the Russian-occupied nuclear facility, Europe’s largest. The reservoir supplies water for, among other things, Zaporizhzhia’s cooling systems.
Dan G. Cacuci, Mihaela Ionescu-Bujor
Nuclear Science and Engineering | Volume 165 | Number 1 | May 2010 | Pages 1-17
Technical Paper | doi.org/10.13182/NSE09-37A
Articles are hosted by Taylor and Francis Online.
When n measurements and/or computations of the same (unknown) quantity yield data points xj with corresponding standard deviations (uncertainties) j such that the distances [vertical bar]xj - xk[vertical bar] between any two data points are smaller than or comparable to the sum (j + k) of their respective uncertainties, the respective data points are considered to be consistent or to agree within error bars. However, when the distances [vertical bar]xj - xk[vertical bar] are larger than (j + k), the respective data are considered to be inconsistent or discrepant. Inconsistencies can be caused by unrecognized or ill-corrected experimental effects (e.g., background corrections, dead time of the counting electronics, instrumental resolution, sample impurities, calibration errors). Although there is a nonzero probability that genuinely discrepant data could occur (for example, for a Gaussian sampling distribution with standard deviation , the probability that two equally precise measurements would be separated by more than 2 is erfc(1) [approximately equal] 0.157), it is much more likely that apparently discrepant data actually indicate the presence of unrecognized errors.This work addresses the treatment of unrecognized errors by applying the maximum entropy principle under quadratic loss, to the discrepant data. Novel results are obtained for the posterior distribution determining the unknown mean value (i.e., unknown location parameter) of the data and also for the marginal posterior distribution of the unrecognized errors. These novel results are considerably more rigorous, are more accurate, and have a wider range of applicability than extant recipes for handling discrepant data.