ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Dan G. Cacuci, Mihaela Ionescu-Bujor
Nuclear Science and Engineering | Volume 165 | Number 1 | May 2010 | Pages 1-17
Technical Paper | doi.org/10.13182/NSE09-37A
Articles are hosted by Taylor and Francis Online.
When n measurements and/or computations of the same (unknown) quantity yield data points xj with corresponding standard deviations (uncertainties) j such that the distances [vertical bar]xj - xk[vertical bar] between any two data points are smaller than or comparable to the sum (j + k) of their respective uncertainties, the respective data points are considered to be consistent or to agree within error bars. However, when the distances [vertical bar]xj - xk[vertical bar] are larger than (j + k), the respective data are considered to be inconsistent or discrepant. Inconsistencies can be caused by unrecognized or ill-corrected experimental effects (e.g., background corrections, dead time of the counting electronics, instrumental resolution, sample impurities, calibration errors). Although there is a nonzero probability that genuinely discrepant data could occur (for example, for a Gaussian sampling distribution with standard deviation , the probability that two equally precise measurements would be separated by more than 2 is erfc(1) [approximately equal] 0.157), it is much more likely that apparently discrepant data actually indicate the presence of unrecognized errors.This work addresses the treatment of unrecognized errors by applying the maximum entropy principle under quadratic loss, to the discrepant data. Novel results are obtained for the posterior distribution determining the unknown mean value (i.e., unknown location parameter) of the data and also for the marginal posterior distribution of the unrecognized errors. These novel results are considerably more rigorous, are more accurate, and have a wider range of applicability than extant recipes for handling discrepant data.