ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Dan G. Cacuci, Mihaela Ionescu-Bujor
Nuclear Science and Engineering | Volume 165 | Number 1 | May 2010 | Pages 1-17
Technical Paper | doi.org/10.13182/NSE09-37A
Articles are hosted by Taylor and Francis Online.
When n measurements and/or computations of the same (unknown) quantity yield data points xj with corresponding standard deviations (uncertainties) j such that the distances [vertical bar]xj - xk[vertical bar] between any two data points are smaller than or comparable to the sum (j + k) of their respective uncertainties, the respective data points are considered to be consistent or to agree within error bars. However, when the distances [vertical bar]xj - xk[vertical bar] are larger than (j + k), the respective data are considered to be inconsistent or discrepant. Inconsistencies can be caused by unrecognized or ill-corrected experimental effects (e.g., background corrections, dead time of the counting electronics, instrumental resolution, sample impurities, calibration errors). Although there is a nonzero probability that genuinely discrepant data could occur (for example, for a Gaussian sampling distribution with standard deviation , the probability that two equally precise measurements would be separated by more than 2 is erfc(1) [approximately equal] 0.157), it is much more likely that apparently discrepant data actually indicate the presence of unrecognized errors.This work addresses the treatment of unrecognized errors by applying the maximum entropy principle under quadratic loss, to the discrepant data. Novel results are obtained for the posterior distribution determining the unknown mean value (i.e., unknown location parameter) of the data and also for the marginal posterior distribution of the unrecognized errors. These novel results are considerably more rigorous, are more accurate, and have a wider range of applicability than extant recipes for handling discrepant data.