ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Lei Zhu, Jim E. Morel
Nuclear Science and Engineering | Volume 164 | Number 3 | March 2010 | Pages 205-220
Technical Paper | doi.org/10.13182/NSE08-67
Articles are hosted by Taylor and Francis Online.
We derive three new linear-discontinuous least-squares discretizations for the Sn equations in one-dimensional slab geometry. Standard least-squares methods are not compatible with discontinuous trial spaces, and they are also generally not conservative. Our new methods are unique in that they are based upon a least-squares minimization principle, use a discontinuous trial space, are conservative, and retain the structure of standard Sn spatial discretization schemes. To our knowledge, conservative least-squares spatial discretization schemes have not previously been developed for the Sn equations. We compare our new methods both theoretically and numerically to the linear-discontinuous Galerkin method and the lumped linear-discontinuous Galerkin method. We find that one of our schemes is clearly superior to the other two and offers certain advantages over both of the Galerkin schemes.