ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
A. C. Morreale, D. R. Novog
Nuclear Science and Engineering | Volume 164 | Number 2 | February 2010 | Pages 151-161
Technical Paper | doi.org/10.13182/NSE08-16
Articles are hosted by Taylor and Francis Online.
The pursuit of more realistic models for nuclear power plant systems is becoming increasingly important and has led to an expansion in statistical uncertainty analysis coupled with the use of best-estimate predictions. Within these methodologies, derived acceptance criteria have been developed to ensure that the ultimate safety criteria are met with acceptably high levels of probability and confidence. The meeting of these derived criteria with a probability of 95% for a confidence interval of 95%, the 95/95 criteria, ensures consistency between analysis and instrumentation accuracy requirements set forth in ISA 67.04 standards. However, the application of these statistical methods to accidents requiring operator intervention, such as complete loss-of-feedwater events, has not previously been the topic of investigation. This paper applies the extreme value statistics (EVS) methodology to the steam generator-level transients predicted to result from a total loss-of-feedwater accident and compares the result to other uncertainty propagation methods and deterministic calculations. The transient was modeled using a full-circuit one-dimensional thermal-hydraulic code, and the epistemic and aleatory uncertainties inherent in the reactor are assessed. Based upon these results the available steam generator inventories at the time of trip were statistically determined, and subsequently, the available times for operator action were determined. Comparisons were made between the EVS methods and limiting deterministic analysis results for a standard CANDU 9 design as well as to other best-estimate and uncertainty-analysis techniques. Key uncertainties were identified based on phenomena identification and ranking tables and were confirmed through sensitivity studies. The requirement for operator-initiated actions for the EVS case was ˜46 min with 95% probability and 95% confidence from the time of annunciation, and this was 30 min longer than the limiting deterministic case.