ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
A. C. Morreale, D. R. Novog
Nuclear Science and Engineering | Volume 164 | Number 2 | February 2010 | Pages 151-161
Technical Paper | doi.org/10.13182/NSE08-16
Articles are hosted by Taylor and Francis Online.
The pursuit of more realistic models for nuclear power plant systems is becoming increasingly important and has led to an expansion in statistical uncertainty analysis coupled with the use of best-estimate predictions. Within these methodologies, derived acceptance criteria have been developed to ensure that the ultimate safety criteria are met with acceptably high levels of probability and confidence. The meeting of these derived criteria with a probability of 95% for a confidence interval of 95%, the 95/95 criteria, ensures consistency between analysis and instrumentation accuracy requirements set forth in ISA 67.04 standards. However, the application of these statistical methods to accidents requiring operator intervention, such as complete loss-of-feedwater events, has not previously been the topic of investigation. This paper applies the extreme value statistics (EVS) methodology to the steam generator-level transients predicted to result from a total loss-of-feedwater accident and compares the result to other uncertainty propagation methods and deterministic calculations. The transient was modeled using a full-circuit one-dimensional thermal-hydraulic code, and the epistemic and aleatory uncertainties inherent in the reactor are assessed. Based upon these results the available steam generator inventories at the time of trip were statistically determined, and subsequently, the available times for operator action were determined. Comparisons were made between the EVS methods and limiting deterministic analysis results for a standard CANDU 9 design as well as to other best-estimate and uncertainty-analysis techniques. Key uncertainties were identified based on phenomena identification and ranking tables and were confirmed through sensitivity studies. The requirement for operator-initiated actions for the EVS case was ˜46 min with 95% probability and 95% confidence from the time of annunciation, and this was 30 min longer than the limiting deterministic case.