ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Urenco USA feeds UF6 into new U.S. commercial enrichment cascade
Urenco USA has initiated production of enriched uranium in its newest gas centrifuge enrichment cascade—the first in a planned expansion of its Eunice, N.M., facility announced in July 2023. When the expansion is complete, early in 2027, the site will have increased its capacity by about 15 percent, adding about 700,000 separative work units (SWU) per year, the company said May 19.
Youqi Zheng, Hongchun Wu, Liangzhi Cao, Nam Zin Cho
Nuclear Science and Engineering | Volume 164 | Number 2 | February 2010 | Pages 87-104
Technical Paper | doi.org/10.13182/NSE09-21
Articles are hosted by Taylor and Francis Online.
This paper describes Daubechies' wavelet method (DWM) for the discretization of the angular variable in the neutron transport equation. Two special features are introduced: (a) the azimuthal angle is discretized using the Daubechies' scaling function as the basis function, while the polar angle is decoupled and discretized using the discrete ordinates in a standard manner, and (b) the construction of Daubechies' wavelets on an interval is used to get around the edge effect between subdomains in the angular variable. In addition, two acceleration methods, namely, coarse mesh rebalance and coarse mesh finite difference, are implemented in DWM. The test results on several benchmark problems indicate that DWM described in this paper is capable of treating transport problems exhibiting angularly complicated behaviors, effective in mitigating ray effect, and versatile in handling transport phenomena in a variety of structured media.