ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
John Loberg, Michael Österlund, Jan Blomgren, Klaes-Håkan Bejmer
Nuclear Science and Engineering | Volume 164 | Number 1 | January 2010 | Pages 69-79
Technical Paper | doi.org/10.13182/NSE09-17
Articles are hosted by Taylor and Francis Online.
The ratio between the thermal- and fast-neutron fluxes in a boiling water reactor depends on the void fraction. The density of the steam-water mixture present in the core determines the efficiency of the moderation of fast neutrons born in fission; therefore, the void fraction could be determined by means of a simultaneous measurement of the thermal- and fast-neutron fluxes. Such measurement could also be used to investigate channel bow of the nuclear fuel bundles surrounding the detector because of sensitivity of the thermal flux to geometry changes.Calculations have been performed with both lattice and nodal codes to study the behavior of the void fraction correlation to the ratio of the thermal- and fast-neutron fluxes. The results prove the correlation to be nearly linear and robust. The rate of change of the correlation is insensitive to standard reactor operating parameters such as control rods and burnable absorbers; the sensitivity of the ratio to void fraction changes primarily depends on the geometry of the fuel bundles. A linear prediction model was used to represent the nodal code results. The absolute void fraction at over 792 positions in the core could be predicted with an absolute uncertainty of ±1.5%.