ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Urenco USA feeds UF6 into new U.S. commercial enrichment cascade
Urenco USA has initiated production of enriched uranium in its newest gas centrifuge enrichment cascade—the first in a planned expansion of its Eunice, N.M., facility announced in July 2023. When the expansion is complete, early in 2027, the site will have increased its capacity by about 15 percent, adding about 700,000 separative work units (SWU) per year, the company said May 19.
Ser Gi Hong, Kang-Seog Kim, Jae Seung Song
Nuclear Science and Engineering | Volume 164 | Number 1 | January 2010 | Pages 33-52
Technical Paper | doi.org/10.13182/NSE09-18
Articles are hosted by Taylor and Francis Online.
This paper analyzes the convergence of the rebalance iteration methods for accelerating the power iteration method of the discrete ordinates transport equation in the eigenvalue problem. The rebalance iteration methods include the coarse mesh rebalance (CMR), the coarse mesh finite difference (CMFD), and the partial current-based CMFD methods. The convergence analysis is performed with the well-known Fourier analysis through linearization. In the linearized form, these rebalance methods are formulated in a unified way where the rebalance methods are different only in a parameter. The analyses are applied for both one- and two-group problems in a homogeneous infinite medium and a finite medium having periodic boundary conditions. The theoretical analysis shows that the convergences of the rebalance methods for the eigenvalue problems are closely related with the ones for the fixed source problems and that the convergences for the eigenvalue problems can be analyzed with the formula for the fixed source problem after transforming the scattering cross sections into a different cross-section set. The numerical tests show that the Fourier convergence analysis provides a reasonable estimate for the numerical spectral radii for the model problems.