ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ser Gi Hong, Kang-Seog Kim, Jae Seung Song
Nuclear Science and Engineering | Volume 164 | Number 1 | January 2010 | Pages 33-52
Technical Paper | doi.org/10.13182/NSE09-18
Articles are hosted by Taylor and Francis Online.
This paper analyzes the convergence of the rebalance iteration methods for accelerating the power iteration method of the discrete ordinates transport equation in the eigenvalue problem. The rebalance iteration methods include the coarse mesh rebalance (CMR), the coarse mesh finite difference (CMFD), and the partial current-based CMFD methods. The convergence analysis is performed with the well-known Fourier analysis through linearization. In the linearized form, these rebalance methods are formulated in a unified way where the rebalance methods are different only in a parameter. The analyses are applied for both one- and two-group problems in a homogeneous infinite medium and a finite medium having periodic boundary conditions. The theoretical analysis shows that the convergences of the rebalance methods for the eigenvalue problems are closely related with the ones for the fixed source problems and that the convergences for the eigenvalue problems can be analyzed with the formula for the fixed source problem after transforming the scattering cross sections into a different cross-section set. The numerical tests show that the Fourier convergence analysis provides a reasonable estimate for the numerical spectral radii for the model problems.