ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
February 2025
Fusion Science and Technology
Latest News
Germany election brings nuclear power back into spotlight
It’s been less than two years since Germany shuttered its three remaining nuclear plants on April 15, 2023—the culmination of a decision reached during the backlash following the Fukushima Daiichi accident in Japan in 2011.
Gasper Zerovnik, Luka Snoj, Matjaz Ravnik
Nuclear Science and Engineering | Volume 163 | Number 2 | October 2009 | Pages 183-190
Technical Paper | doi.org/10.13182/NSE163-183
Articles are hosted by Taylor and Francis Online.
We demonstrated the use of combinatorial methods to optimize the filling of spent nuclear fuel (SNF) in metal canisters for final deep SNF repository, according to the maximal allowed thermal power per canister Pmax and the limit of n = 4 spent-fuel assemblies per canister. As a next step, the deposition time can be optimized by minimizing the required number of canisters M and the interim storage time. The method has been tested in detail for a typical pressurized water reactor (PWR), nuclear power plant (NPP) Krsko, SNF for different numbers of reactor cycles and different Pmax. The results show that the time interval between the last reactor cycle and the optimal deposition time varies between 3 and 30 yr for a typical PWR. The most significant contribution to the uncertainty of the calculated SNF decay heat (thermal power) is due to inaccurate cross sections taken from generic cross-section libraries. The quality of the results was verified by comparing the calculated M to the theoretical lower boundary Mmin. The idea behind the optimization method is universal and thus can be implemented for any SNF, canister, and repository design.