ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Gasper Zerovnik, Luka Snoj, Matjaz Ravnik
Nuclear Science and Engineering | Volume 163 | Number 2 | October 2009 | Pages 183-190
Technical Paper | doi.org/10.13182/NSE163-183
Articles are hosted by Taylor and Francis Online.
We demonstrated the use of combinatorial methods to optimize the filling of spent nuclear fuel (SNF) in metal canisters for final deep SNF repository, according to the maximal allowed thermal power per canister Pmax and the limit of n = 4 spent-fuel assemblies per canister. As a next step, the deposition time can be optimized by minimizing the required number of canisters M and the interim storage time. The method has been tested in detail for a typical pressurized water reactor (PWR), nuclear power plant (NPP) Krsko, SNF for different numbers of reactor cycles and different Pmax. The results show that the time interval between the last reactor cycle and the optimal deposition time varies between 3 and 30 yr for a typical PWR. The most significant contribution to the uncertainty of the calculated SNF decay heat (thermal power) is due to inaccurate cross sections taken from generic cross-section libraries. The quality of the results was verified by comparing the calculated M to the theoretical lower boundary Mmin. The idea behind the optimization method is universal and thus can be implemented for any SNF, canister, and repository design.