ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Samet Y. Kadioglu, Dana A. Knoll, Cassiano de Oliveira
Nuclear Science and Engineering | Volume 163 | Number 2 | October 2009 | Pages 132-143
Technical Paper | doi.org/10.13182/NSE09-07
Articles are hosted by Taylor and Francis Online.
Coupling neutronics to thermomechanics is important for the analysis of fast burst reactors because the criticality and safety study of fast burst reactors depends on the thermomechanical behavior of fuel materials. For instance, the shutdown mechanism or the transition between supercritical and subcritical states is driven by the fuel material expansion or contraction. The material expansion is due to the temperature gradient that results from fission power. In this paper, we introduce a numerical model for coupling of neutron diffusion and thermomechanics in fast burst reactors. The goal is to have a better understanding of the relation between the reactivity insertion and the thermomechanical response of fuel materials. We perform a nondimensional analysis of the coupled system that provides insight into the behavior of the transient. We also provide a semianalytical solution model to the coupled system for partial verification of our numerical solutions. We studied material behavior corresponding to different levels of reactivity insertion.