ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
R. Nyqvist, D. Anderson, M. Lisak
Nuclear Science and Engineering | Volume 163 | Number 1 | September 2009 | Pages 85-90
Technical Note | doi.org/10.13182/NSE163-85
Articles are hosted by Taylor and Francis Online.
Recently, an expansion of the Boltzmann scattering operator describing the angular spreading of particle beams was given that included the effects of large angle scattering processes, thus generalizing the classical Fokker-Planck equation, valid in the limit of small angle scattering. The present work aims at making an analytical comparison between predictions based on the classical Fokker-Planck equation and those based on a generalized one, which includes a first-order correction term in the expansion of the Boltzmann scattering operator. The analysis is carried out for thin slabs where backscattering effects can be neglected and makes use of a moment approach, which leads to an infinite system of recursively coupled ordinary differential equations. The system is truncated in a consistent manner, and the effects of large angle scattering on the evolution of the moments are determined in explicit analytical form. An approximate similarity solution of the generalized Fokker-Planck equation is also found, and the results of both approaches provide a clear picture of the increased diffusive beam spreading due to large angle scattering. A comparison with previously published Monte Carlo simulation results shows good agreement.