ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
R. Nyqvist, D. Anderson, M. Lisak
Nuclear Science and Engineering | Volume 163 | Number 1 | September 2009 | Pages 85-90
Technical Note | doi.org/10.13182/NSE163-85
Articles are hosted by Taylor and Francis Online.
Recently, an expansion of the Boltzmann scattering operator describing the angular spreading of particle beams was given that included the effects of large angle scattering processes, thus generalizing the classical Fokker-Planck equation, valid in the limit of small angle scattering. The present work aims at making an analytical comparison between predictions based on the classical Fokker-Planck equation and those based on a generalized one, which includes a first-order correction term in the expansion of the Boltzmann scattering operator. The analysis is carried out for thin slabs where backscattering effects can be neglected and makes use of a moment approach, which leads to an infinite system of recursively coupled ordinary differential equations. The system is truncated in a consistent manner, and the effects of large angle scattering on the evolution of the moments are determined in explicit analytical form. An approximate similarity solution of the generalized Fokker-Planck equation is also found, and the results of both approaches provide a clear picture of the increased diffusive beam spreading due to large angle scattering. A comparison with previously published Monte Carlo simulation results shows good agreement.