ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
R. Nyqvist, D. Anderson, M. Lisak
Nuclear Science and Engineering | Volume 163 | Number 1 | September 2009 | Pages 85-90
Technical Note | doi.org/10.13182/NSE163-85
Articles are hosted by Taylor and Francis Online.
Recently, an expansion of the Boltzmann scattering operator describing the angular spreading of particle beams was given that included the effects of large angle scattering processes, thus generalizing the classical Fokker-Planck equation, valid in the limit of small angle scattering. The present work aims at making an analytical comparison between predictions based on the classical Fokker-Planck equation and those based on a generalized one, which includes a first-order correction term in the expansion of the Boltzmann scattering operator. The analysis is carried out for thin slabs where backscattering effects can be neglected and makes use of a moment approach, which leads to an infinite system of recursively coupled ordinary differential equations. The system is truncated in a consistent manner, and the effects of large angle scattering on the evolution of the moments are determined in explicit analytical form. An approximate similarity solution of the generalized Fokker-Planck equation is also found, and the results of both approaches provide a clear picture of the increased diffusive beam spreading due to large angle scattering. A comparison with previously published Monte Carlo simulation results shows good agreement.