ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. Le Tellier, D. Fournier, J. M. Ruggieri
Nuclear Science and Engineering | Volume 163 | Number 1 | September 2009 | Pages 34-55
Technical Paper | doi.org/10.13182/NSE163-34
Articles are hosted by Taylor and Francis Online.
This paper describes a new approach for treating the energy variable of the neutron transport equation in the resolved resonance energy range. The aim is to avoid recourse to a case-specific spatially dependent self-shielding calculation when considering a broad group structure. This method consists of a discontinuous Galerkin discretization of the energy using wavelet-based elements. A t-orthogonalization of the element basis is presented in order to make the approach tractable for spatially dependent problems.First numerical tests of this method are carried out in a limited framework under the Livolant-Jeanpierre hypotheses in an infinite homogeneous medium. They are mainly focused on the way to construct the wavelet-based element basis. Indeed, the prior selection of these wavelet functions by a thresholding strategy applied to the discrete wavelet transform of a given quantity is a key issue for the convergence rate of the method. The Canuto thresholding approach applied to an approximate flux is found to yield a nearly optimal convergence in many cases. In these tests, the capability of such a finite element discretization to represent the flux depression in a resonant region is demonstrated; a relative accuracy of 10-3 on the flux (in L2-norm) is reached with less than 100 wavelet coefficients per group.