ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Candidates announced for 2025 ANS leadership positions
As the U.S. election season finally comes to an end, the annual American Nuclear Society election season is right around the corner. Seventeen candidates have been nominated for the positions of ANS vice president/president-elect, treasurer, and six positions on the board of directors (four U.S. directors, one non-U.S. director, and one student director). Ballots will be sent via email on Tuesday, March 4, 2025, and must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
Alexander Glaser
Nuclear Science and Engineering | Volume 163 | Number 1 | September 2009 | Pages 26-33
Technical Paper | doi.org/10.13182/NSE163-26
Articles are hosted by Taylor and Francis Online.
We report neutronics calculations for the most important natural uranium-fueled reactor types historically used for weapons plutonium production. These include an early design of the Hanford-type graphite-moderated and light-water-cooled reactor used in the United States; the Calder Hall-type graphite-moderated and gas-cooled reactor used in the United Kingdom; and the NRX-type heavy-water-moderated and light-water-cooled reactor, originally developed in Canada for civilian purposes but later used in India and Pakistan for military plutonium production. We show that while it is possible in principle to identify with a high level of confidence weapon-grade plutonium compositions produced in other types of reactors, e.g., light-water-cooled or fast neutron reactors, it is difficult to distinguish among plutonium compositions generated in dedicated production reactors fueled with natural uranium. This suggests that efforts to determine the origin of weapon-grade plutonium for a nuclear forensic analysis could well remain inconclusive without access to databases based on actual samples of the nuclear material.