ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Alexander Glaser
Nuclear Science and Engineering | Volume 163 | Number 1 | September 2009 | Pages 26-33
Technical Paper | doi.org/10.13182/NSE163-26
Articles are hosted by Taylor and Francis Online.
We report neutronics calculations for the most important natural uranium-fueled reactor types historically used for weapons plutonium production. These include an early design of the Hanford-type graphite-moderated and light-water-cooled reactor used in the United States; the Calder Hall-type graphite-moderated and gas-cooled reactor used in the United Kingdom; and the NRX-type heavy-water-moderated and light-water-cooled reactor, originally developed in Canada for civilian purposes but later used in India and Pakistan for military plutonium production. We show that while it is possible in principle to identify with a high level of confidence weapon-grade plutonium compositions produced in other types of reactors, e.g., light-water-cooled or fast neutron reactors, it is difficult to distinguish among plutonium compositions generated in dedicated production reactors fueled with natural uranium. This suggests that efforts to determine the origin of weapon-grade plutonium for a nuclear forensic analysis could well remain inconclusive without access to databases based on actual samples of the nuclear material.