ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC’s David Wright visits the Hill and more NRC news
Wright
The Nuclear Regulatory Commission is in the spotlight today for three very different reasons. First, NRC Chair David Wright was on the Hill yesterday for his renomination hearing in front of the Senate’s Environment and Public Works Committee. Second, the NRC released its updated milestone schedules according to the Nuclear Energy Innovation and Modernization Act (NEIMA) and the executive orders signed by President Trump last month; and third, as reported by Reuters on Tuesday, 28 former NRC officials have condemned the dismissal of Commissioner Hanson earlier this month.
E. Bomboni, N. Cerullo, G. Lomonaco
Nuclear Science and Engineering | Volume 162 | Number 3 | July 2009 | Pages 282-298
Technical Note | doi.org/10.13182/NSE162-282
Articles are hosted by Taylor and Francis Online.
The pebble bed gas-cooled reactor is one of the most promising concepts among the Generation III+ and Generation IV reactors. Currently, the pebble bed modular reactor (PBMR) design, both U and Pu and minor actinide fueled, is being developed. Modeling the arrangement of coated particles (CPs) inside a spherical region like a pebble seems to be an important issue in the frame of calculations. To use the (relatively) old Monte Carlo codes without any correction, some approximations are often introduced. Recent Monte Carlo codes like MCNP5 and some new original subroutines that we have developed allow the possibility of obtaining more detailed and more physically correct geometrical descriptions of this kind of system. Some studies on modeling pebbles and pebble bed cores have already been carried out by other researchers, but these works are substantially limited to AVR-type UO2-fueled pebbles. However, the impact of approximated models on fuel mass, reactivity, and reactor life prediction has not yet been investigated for new PBMR-type pebbles.At the same time, an assessment of introducing a stochastic CP arrangement is not so widespread. Analyzing two PBMR pebbles, one Pu- and the other U-fueled, this paper focuses on quantifying errors due to the different approximations generally used to describe the CP lattice inside a high-temperature reactor pebble bed core, as far as mass of fuel, reactivity, and burnup simulation are concerned. This aim was reached also through a new feature implemented in the MCNP5 code, i.e., capability to treat (pseudo) stochastic geometries. Later, we compared the initial mass of fuel, keff, and isotopic evolution versus burnup of some approximated pebble models with the reference model, built by means of this new MCNP5 feature.