ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Massimiliano Rosa, Yousry Y. Azmy, Jim E. Morel
Nuclear Science and Engineering | Volume 162 | Number 3 | July 2009 | Pages 234-252
Technical Paper | doi.org/10.13182/NSE162-234
Articles are hosted by Taylor and Francis Online.
General expressions for the matrix elements of the discrete SN-equivalent integral transport operator are derived in slab geometry. Their asymptotic behavior versus cell optical thickness is investigated both for a homogeneous slab and for a heterogeneous slab characterized by a periodic material discontinuity wherein each optically thick cell is surrounded by two optically thin cells in a repeating pattern. In the case of a homogeneous slab, the asymptotic analysis conducted in the thick-cell limit for a highly scattering medium shows that the discretized integral transport operator approaches a tridiagonal matrix possessing a diffusion-like coupling stencil. It is further shown that this structure is approached at a fast exponential rate with increasing cell thickness when the arbitrarily high order transport method of the nodal type and zero-order spatial approximation (AHOT-N0) formalism is employed to effect the spatial discretization of the discrete ordinates transport operator. In the case of periodically heterogeneous slab configurations, the asymptotic behavior is realized by pushing apart the cells' optical thicknesses; i.e., the thick cells are made thicker while the thin cells are made thinner at a prescribed rate. We show that in this limit the discretized integral transport operator is approximated by a pentadiagonal structure. Notwithstanding, the discrete operator is amenable to algebraic transformations leading to a matrix representation still asymptotically approaching a tridiagonal structure at a fast exponential rate bearing close resemblance to the diffusive operator.The results of the asymptotic analysis of the integral transport matrix are then used to gain insight into the excellent convergence properties of the adjacent-cell preconditioner (AP) acceleration scheme. Specifically, the AP operator exactly captures the asymptotic structure acquired by the integral transport matrix in the thick-cell limit for homogeneous slabs of pure-scatterer or partial-scatterer material, and for periodically heterogeneous slabs hosting purely scattering materials. In the above limits the integral transport matrix reduces to a diffusive structure consistent with the diffusive matrix template used to construct the AP. In the case of periodically heterogeneous slabs containing absorbing materials, the AP operator partially captures the asymptotic structure acquired by the integral transport matrix. The inexact agreement is due either to discrepancies in the equations for the boundary cells or to the nondiffusive structure acquired by the integral transport matrix. These findings shed light on the immediate convergence, i.e., convergence in two iterations, displayed by the AP acceleration scheme in the asymptotic limit for slabs hosting purely scattering materials, both in the homogeneous and periodically heterogeneous cases. For periodically heterogeneous slabs containing absorbing materials, immediate convergence is achieved by modifying the original recipe for constructing the AP so that the correct asymptotic structure of the integral transport matrix coincides with the AP operator in the asymptotic limit.