ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
R. M. Ferrer, Y. Y. Azmy
Nuclear Science and Engineering | Volume 162 | Number 3 | July 2009 | Pages 215-233
Technical Paper | doi.org/10.13182/NSE162-215
Articles are hosted by Taylor and Francis Online.
An error analysis is performed for the nodal integral method (NIM) applied to the one-speed, steady-state neutron diffusion equation in two-dimensional Cartesian geometry. The geometric configuration of the problem employed in the analysis consists of a homogeneous-material unit square with Dirichlet boundary conditions on all four sides. The NIM equations comprise three sets of equations: (a) one neutron balance equation per computational cell, (b) one current continuity condition per internal x = const computational cell edge, and (c) one current continuity condition per internal y = const computational cell edge. A Maximum Principle is proved for the solution of the NIM equations, followed by an error analysis achieved by applying the Maximum Principle to a carefully constructed mesh function driven by the truncation error or residual. The error analysis establishes the convergence of the NIM solution to the exact solution if the latter is twice differentiable. Furthermore, if the exact solution is four times differentiable, the NIM solution error is bounded by an O(a2) expression involving bounds on the exact solution's fourth partial derivatives, where a is half the scaled length of a computational cell. Numerical experiments are presented whose results successfully verify the conclusions of the error analysis.