ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
E. F. Kryuchkov, V. A. Apse, V. A.Yufereva, V. B. Glebov, A. N. Shmelev
Nuclear Science and Engineering | Volume 162 | Number 2 | June 2009 | Pages 208-213
Technical Note | doi.org/10.13182/NSE162-208
Articles are hosted by Taylor and Francis Online.
In the opinion of some experts in problems of nuclear nonproliferation, the threat that subnational terrorist groups may become owners of gas centrifuges is real. If enrichment of feeding uranium increases from 0.7 to 20%, then the scope of separative works and amount of the feeding uranium needed for uranium enrichment up to the weapons-grade level decreases by many times. In this connection it can be expected that a potential nuclear proliferator will use gas centrifuges for illegal reenrichment of 20% uranium, taken from export deliveries for research reactors or from any other sources, up to weapons-grade quality and then manufacture a crude nuclear explosive device. These reasons indicate that besides reduction of uranium enrichment to 20% 235U, other measures may also be required to upgrade self-protection of 20% uranium against its unauthorized reenrichment.Denaturing of 20% uranium due to the admixture of small 232U amounts (~0.1%) creates an effective barrier against its renrichment up to the weapons-grade level because in the reenriching process the following occurs: (a) the content of 232U increases; (b) the internal source of alpha radiation intensifies; (c) UF6 molecules are destroyed by alpha particles from decays of 232U with generation of low-volatile uranium fluorides and free fluorine; and (d) the neutron emission rate intensifies too, and this results in a cardinal reduction of energy yield from the chain fission reaction (CFR) by three orders of magnitude. So, uranium denatured with 232U becomes quite unattractive for potential nuclear proliferators.The authors are continuing the studies on the effects induced by the 232U admixture on the radiation resistance of UF6 and on the energy yield of CFR in reenriched uranium.